BiznesSztuczna inteligencjaRynekPolecane tematy
Do 2025 roku wartość biznesowa AI przekroczy 4 biliony dolarów
Tak wynika z raportu “Unlocking the power of AI” firmy doradczej Deloitte, który wskazuje również, iż 90% firm chce osiągnąć wyższy poziom dojrzałości w zakresie AI w trakcie najbliższych 3 lat. Realizacja tych planów zależy jednak od wielu czynników, takich jak posiadanie odpowiednio wykwalifikowanych pracowników czy zdolności organizacji do optymalizacji procesu implementacji rozwiązań z zakresu uczenia maszynowego. Co warto podkreślić, w procesie wdrażania nowych rozwiązań sztucznej inteligencji kluczową rolę odgrywać mają architekci oprogramowania.
Zdaniem autorów raportu – powstałego na podstawie rozmów z ponad 600 reprezentantami stanowisk kierowniczych w firmach z różnych branż – kluczowe w procesie adaptacji rozwiązań z zakresu sztucznej inteligencji (AI) są machine learning operations (MLOps). To zbiór praktyk umożliwiających optymalne wdrożenie uczenia maszynowego (ML) w proces produkcyjny.
Podstawowym celem rozwiązań typu MLOps jest implementacja uczenia maszynowego w sposób zautomatyzowany, umożliwiający efektywne skalowanie i maksymalizację skuteczności. Równie istotna jest kwestia spójności i powtarzalności w podejściu do adaptacji nowopowstających rozwiązań z zakresu AI, szczególnie gdy uwzględni się tempo rozwoju sztucznej inteligencji.
Według autorów raportu Deloitte, firmy charakteryzujące się rozwiniętymi zdolnościami z zakresu MLOps będą w stanie maksymalizować korzyści wynikające ze stosowania najbardziej zaawansowanych narzędzi opartych o algorytmy sztucznej inteligencji. Chodzi m.in. o rozwiązania z zakresu uczenia głębokiego, takie jak modele generatywne czy uczenie przez wzmacnianie, których wykorzystanie w trakcie kolejnych dwunastu miesięcy zapowiedziało odpowiednio 41 i 42% badanych.
“Znaczna część ankietowanych firm zdaje sobie sprawę z korzyści, wynikających ze stosowania rozwiązań opartych o sztuczną inteligencję i uczenie maszynowe. Kluczową kwestią dla zdolności do adaptacji nowych technologii jest jednak dotychczasowe doświadczenie danego podmiotu w zakresie implementacji AI i ML. Dynamika powstawania nowych narzędzi cyfrowych sprawia bowiem, że zdolność do uzyskania przewagi konkurencyjnej będzie w coraz większym stopniu zależała od predyspozycji w zakresie usprawniania procesów za pomocą nowoczesnych rozwiązań” – komentuje Michał Sosinka, partner associate, Cybersecurity, Deloitte
Kluczowa rola architektów oprogramowania
Przytoczone w raporcie prognozy dotyczące wartości biznesowej generowanej dzięki uczeniu maszynowemu pokazują jak duże znaczenie dla globalnej gospodarki ma ta technologia. Według autorów raportu, do 2025 roku wartość biznesowa powstająca dzięki sztucznej inteligencji i uczeniu maszynowemu wyniesie 4,4 bln dol. Równie istotne będą rozwiązania typu MLOps – ten rynek w przeciągu najbliższych dwóch lat ma być z kolei wart 4 mld dol. Nic więc dziwnego, że zdecydowana większość firm jest zainteresowana tym obszarem. Analiza Deloitte wskazuje, że 9 na 10 badanych podmiotów zamierza w trakcie kolejnych trzech lat dołączyć do grona liderów całego sektora lub rynku w obszarze implementacji AI.
Ogromne ambicje przedsiębiorców napotykają jednak szereg wyzwań związanych z adaptacją narzędzi sztucznej inteligencji. Jednym z nich jest postrzeganie dojrzałości danego podmiotu w tym zakresie przez osoby decyzyjne w firmach. Wyniki ankiety pokazały, że zajmujący stanowiska kierownicze zdają się bardziej optymistycznie postrzegać stopień zaawansowania zarządzanego przez nich podmiotu niż pracownicy o wysokich kwalifikacjach technologicznych. W pierwszej z grup ponad 50% respondentów uznaje swoją organizację za dojrzałą, a niemal co czwarta za bardzo dojrzałą w tym zakresie. Jednocześnie odsetek odpowiedzi wśród pracowników o wysokich kwalifikacjach technicznych wyniósł odpowiednio 45% i 13% Ankietowani wskazali również na duże zapotrzebowanie na pracowników o kompetencjach umożliwiających sprawne przeprowadzenie procesu implementacji rozwiązań typu AI czy ML. Obecnie firmy i organizacje poszukują przede wszystkim architektów IT (28% odpowiedzi), inżynierów rozwiązań typu MLOps (26%) i inżynierów usług chmurowych (26%).
Autorzy badania podkreślają także obszar, który przez większość badanych nie był wskazany jako kluczowe wyzwanie w procesie osiągania dojrzałości w zakresie sztucznej inteligencji. Chodzi o kwestię przepisów prawnych, która została wymieniona przez zaledwie co dziesiątego respondenta. Jednocześnie dynamicznie zmieniające się otoczenie regulacyjne sprawia, że stosowane rozwiązania typu MLOps muszą być spójne z obowiązującymi przepisami prawa.
Z pełną wersją raportu “Unlocking the power of AI” można zapoznać się pod poniższym linkiem.